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ABSTRACT

The paper discusses the limits of error correction coding for spread spectrum-based video watermarking. The
error correction code has as input the watermark data bits and as output the values which will be scaled
and used to modify the video pixels (transform coefficients). The data rate of the watermark can increase
only at the expense of increasing code rate. Theoretically, the scheme is seen as a communication channel
with Gaussian additive noise interference. Shannon’s (ideal) spherical codes are used as the error correcting
code to calculate the minimum signal to noise ratio (SNR) necessary for a coding scheme with a given block
length to achieve a given error probability. This limit is different from Shannon’s asymptotic limit, which is
valid for infinite block lengths and zero error probability. In practice, in order to verify the Gaussian channel
assumption, the error correction code is a concatenation of codes, of which the innermost is a repetition code.
Several practical codes of different length and rates, such as turbo codes and BCH codes are investigated and
their performance compared to that of the ideal code of the same size. The compromise block length/code
rate is investigated for several marking schemes and attacks.
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1. INTRODUCTION

Video watermarking can be seen as a communication channel and error correction codes can be used to improve
the error rate.1, 2 A thorough presentation of coding schemes is given in,2 although their utility is slightly
hidden in the mathematical detail. The error correction codes are chosen from a large collection, including
convolutional codes with soft decision decoding,3 block codes, such as BCH codes with hard decision decoding4

(which inevitably lose 1− 2dB of their maximum likelihood performance due to hard decision) and, recently,
turbo codes5, 6 and related schemes, due to their large coding gain. The problem of applying coding after
a spread spectrum scheme (equivalent with concatenation with a repetition code) or directly on the video
samples (in spatial or transform domain) is approached.2, 7 The main advantage of the latter method is the
block size, the disadvantage being the non-Gaussian statistics of the noise, which in this case is the video itself.
What is the best method? What is the best code? What is the limit of coding for the video watermarking
channel? It is known that coding cannot give unlimited gains: there is an ultimate limit to what can be
achieved with error correction, and that is the Shannon limit.8 This limit depends on the block error rate
that is needed, the block length and the rate of the code considered. In this paper, we see the video watermark
as a hidden communications channel. We use filtering, interleaving, and spread spectrum to justify an AWGN
assumption. A single error correction code is used to protect the watermark. If the information block length
is increased, its rate increases such that the code length is a constant dependent on the available number of
pixels. We calculate the minimum sample-level signal to noise ratio SNR0 necessary to obtain a probability
of block error of Pw = 10−8 for different block lengths (and their corresponding rates) using the Shannon
limit for finite block lengths.9 We then consider several coding schemes (turbo codes, BCH codes, and short
binary codes) and compare their performance with the limit. The SNR that is available in the channel is
also determined for several simple schemes, such as the direct insertion scheme in the spatial domain and the
scheme using a highpass filter to vary the amplitude of the watermark. The reduction in SNR0 due to MPEG2
compression attacks is estimated. Based on the measured SNR0, the capacity of the watermarking channel is
determined for the given channel model.



2. OUTLINE OF THE PAPER

The paper is structured as follows: Section 3 presents Shannon’s limit and discusses the available coding gain
as a function of block length, code rate and block error probability. Section 4 describes the watermarking
channel model and its parameters. The assumption of Gaussian noise is justified and the method to obtain
such a channel is described. In Section 5 several practical error correction codes are presented, such as turbo
codes and short codes, and their performance is compared to Shannon’s limit. In Section 6 the available
sample-level SNR0 for several watermarking schemes is determined, with no attacks and MPEG2 compression
attacks. The variation of SNR0 with the MPEG2 bit rate is determined. Based on the available SNR0 and the
minimum SNR curves from Shannon limit and the error correction codes, the channel capacity is determined.
Practical codes are chosen to approach this limit and their choice is justified by closeness to Shannon limit.
A short discussion of “dirty paper” codes which reject the host signal interference is presented in Section 7.
Section 8 presents the conclusions.

3. SHANNON’S LIMIT

Consider a code with coded block length n, information block length k and code rate r = k/n. There are
several levels at which the Shannon limit is considered:

Infinite block length, zero rate. The ultimate, asymptotic level, which says that a code of infinite length
and zero rate can achieve infinitely small error probability on an AWGN channel provided that the bit
energy to noise ratio, Eb/No > −1.6dB. This is rather approximate for real codes, which have finite rate
and length.

Infinite block length, nonzero rate. The limit for infinite block length and non-zero code rate r is Eb/No =
22r−1

2r .

Finite block length, nonzero rate. The Shannon limit given the code rate r, the coded block length n and
the probability of error Pw.

The Shannon limit for finite block length is calculated using the sphere packing bound,9 which was
originally derived by Shannon.8 The probability of block error Pw is lower bounded by the probability of
error of (ideal) spherical codes:

Pw ≥ Qn(θSn , A) (1)

The computation proceeds by determining the solid angle θSn from
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which is then used in

Qn(θSn , A) =
∫ π

θSn

(n− 1) sin φn−2

2n/2
√

πΓ
(

n+1
2

)
∫ ∞

0

sn−1e−(s2+nA2−2s
√

nA cos φ)/2dsdφ (3)

where A =
√

2rEb/No. From Equations (3) and (1), a minimum value of Eb/No at which a probability
Pw of block error can be attained is calculated, and we will denote it as sh(n, k, Pw) in the remainder of the
paper.

A simple approximation for large blocks, is9:

k(∆SNRdB)2 ≥ (27± 2)P−1
w,dB (4)

where ∆SNRdB is the difference between the limit corresponding to a block length k and the asymptotic
Shannon limit for the given code rate. The closeness to Shannon limit of practical codes depends on the Pw
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Figure 1. Gaussian distribution of video interference due to spreading.

considered. As Pw is reduced, it becomes more difficult to obtain codes which are close to Shannon’s limit.
The gain that can be obtained by coding increases with Pw, as shown in table 1. The gain that could be
obtained by a real, finite length code can be estimated more precisely by using equation 4. Thus, for k = 1000
and Pw = 10−8 we have P−1

w,dB = −10 log10 Pw = 80 and thus ∆SNRdB ≥ √
2 ≈ 1.4dB. This means that,

for a block size k = 1000 and a Pw = 10−8, a code cannot possibly get closer than about 1.4dB from the
corresponding asymptotic Shannon limit, which for low rate codes can be approximated to −1.6dB. Since the
SNR necessary to reach Pw = 10−8 for uncoded is SNRu = 12dB, the gain achievable by coding with a block
length k = 1000 is SNRu + 1.6 − 1.4 = 12.2dB. The gains for other values of Pw are calculated in a similar
way and presented in table 1.

Pw 10−4 10−8 10−16 10−24

k = 1000 9 12.2 14.88 16.26
k = ∞ 10 13.6 16.88 18.76

Table 1. Possible coding gains [dB] for low rate codes for a given Pw. Equation 4 is used for k = 1000, and a value of
−1.6dB is used for k = ∞.

4. THE WATERMARKING CHANNEL

The basic signal to noise ratio is given by the ratio of the energy of the watermark and the energy of the host
signal. A problem in investigating the SNR is the fact that the distribution of the interference values is not
Gaussian. As shown in Fig. 1, a spreading factor higher than 20 produces a distribution which is close to
Gaussian. By employing an interleaver (scrambler) in order to break the correlation of the image coefficients,
a SNR value which is close to the theoretical value based on the energy of the two signals is obtained. This
means that even in case of MPEG2 compression attacks (see section 6), the SNR can be calculated for a larger
spreading factor and then extrapolated to the basic SNR0 (the sample-level watermark/video energy ratio).
As long as the code rates considered are low enough (less than 1/20), this value can then be used to determine
the performance of the scheme.

A requirement of practical schemes is that the watermark is contained in a short “video segment”. This
requirement constrains the watermark rate and determines the minimum SNR0 at which a given Pw can
be obtained. If we consider a video segment containing 25 frames (1s in PAL), the maximum number of
coefficients is the number of pixels n. A code with a given block length k and rate r = k/n will have an energy
per bit to noise ratio given by

2rEb/No = SNR0 (5)
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Figure 2. Example SNR dependence on block length.

The code will work at a given Pw as long as

Eb/No ≥ Eb/No(code, Pw) (6)

where Eb/No(code, Pw) denotes the bit energy to noise ratio for which a given code has a probability of block
error Pw. By combining equations 5 and 6, we have

SNR0,dB ≥ (Eb/No)dB(code, Pw)+10 log10(2r) = (Eb/No)dB(code, Pw)+10 log10 2+10 log10 k−10 log10 n (7)

The minimum value of SNR0,dB can be obtained by replacing (Eb/No)dB(code, Pw) with Shannon’s limit for
a given block size k, rate r = k/n and probability of block error Pw:

(Eb/No)dB(code, Pw) ≥ sh(n, k, Pw) (8)

In this paper we consider n fixed, corresponding to 1s in PAL, and determine the maximum block length
k that can be used to obtain a probability of error Pw. In this case, the block length k is numerically equal
to the watermark data rate in bits/s. Since the video has n = 25 · 720 · 576 = 10368000 pixels, the equations
above become:

SNR0,dB ≥ −67dB + (En/No)dB(code, Pw) + 10 log10 k (9)

Equation 9 is plotted in Fig. 3 for ideal spherical codes (label “Shannon”) and for (En/No)dB(code, Pw)
replaced with the asymptotic value −1.6dB (label “Asymptote”). The block error probability is Pw = 10−8.
Note that the figure only plots the case of low rate codes, for which the asymptotic value is very close to
−1.6dB and the Gaussian noise assumption holds for the watermarking scheme. Fig. 4 is a more detailed
version of Fig. 3 for short/medium block lengths. It can be observed that for short block lengths there is
a significant difference between the asymptotic and finite block length Shannon limits. As the block length
increases, the limit for finite block length approaches the asymptotic limit. The difference for a block length
of k = 5000 is less than 1dB. This difference is dependent on Pw and increases with decreasing Pw.

5. SHORT AND LONG CODES

As shown in Fig. 3, if the coded block length n is kept constant, the coding gain due to the increase of
information block length k occurs at the expense of increased code rate. It is apparent that the coding gain
reduces but does not compensate the loss due to increase in code rate r. In this situation, the most powerful
scheme is the scheme that embeds a single bit. If the available SNR0 is high enough, more than one bit can be
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Figure 3. Shannon limit SNR0 ranges for Pw = 10−8.
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embedded and the use of coding can maximise the watermark data rate. In the case of attacks that drastically
reduce SNR0, small block lengths k might have to be used.

From a practical coding point of view, Fig. 3 has two regions: long (information) block lengths, for which the
Shannon limit can be closely approached using concatenated codes and iterative decoding, and short/medium
block lengths, for which it is more difficult to find codes that approach the (finite block length) limit.

The practical codes shown in Fig. 3 and 4 are mainly BCH codes (with hard decision decoding) and turbo
codes. A single block is embedded in one video segment. Since the rate of the code does not match the
considered rate, they are serially concatenated with repetition inner codes. The concatenation means that the
code does not fully utilise the rate of the scheme, which is reflected in the relatively large distance from the
limit, even in the case of perfect codes, such as the Golay code, and soft decision decoding. The situation
can be improved by using BCH codes with lower rates and soft decision decoding.1 The “uncoded” graph
presented in the figures represents the performance a block of k uncoded bits, with an inner (rate r = k/n)
repetition code.

At a block length k = 64, the BCH(127, 64, 21) (n = 127, k = 64, dmin ≥ 21) code with hard decision
decoding achieves Pw = 10−8 for an Eb/No = 7.6dB. Using equation 6, we obtain an SNR0 value of −67 +
7.6 + 10 log10 64 = −41.34dB, which is about 6dB away from the sphere packing bound, as shown in Fig. 4.
At the same SNR0, a perfect spherical code can accommodate more than 200 bits/s. Short turbo codes
improve on the performance of the BCH code by just 1dB. This is due to the reduced minimum Hamming
distance of the turbo code for this block length. A significant improvement could be obtained in this region
by reducing the rate of the component codes for the turbo codes and using multiple or serial concatenations.10

A BCH(255, 115, 41) code with hard decision decoding is about 5dB away from the optimal code at a block
length k = 115. The situation is better for long block lengths, where turbo codes are about 2dB away from
optimal for both k = 500 and k = 2000. Note that this performance is dependent on Pw and it can get better
if Pw is increased and worse if Pw is decreased.

6. SNR FOR SIMPLE WATERMARKING SCHEMES

The value of SNR0 can be determined in several ways:

• As the ratio of of the watermark energy and the video energy. This can be used to estimate the SNR0

in the absence of the MPEG2 attacks.

• By determining the distribution of the correlation peaks for a given spreading rate that verifies the
Gaussian assumption. The corresponding SNR can then be determined as SNR = µ2/σ2, where µ is
the average of the distribution and σ is the standard deviation. The SNR0 can then be extrapolated as
SNR0 = SNR/s, where s is the spread value. This can be used to estimate SNR0 even in the presence
of MPEG2 attacks.

SNR0 values have been measured for two simple marking scheme: video independent spatial marking and
video dependent spatial marking using a highpass filter.6 In the former case, the spread watermark is directly
added to the pixel values. In the latter case, the spread watermark is first modulated by the output of a
highpass filter on the image (which makes it video dependent) and then added to the pixel values. In each
case, a constant watermark amplification factor α has been set such that the watermark is (almost) invisible.
The results are presented in Fig. 5 in the case of no attacks. It can be observed that the SNR for the video
dependent scheme is not always better than that of the video dependent scheme. This is due to two possible
factors:

• The video dependent scheme has artifacts at high frequencies which are more visible and thus the scaling
factor had to be reduced.

• The scaling factor for the video independent scheme is too high in certain regions, such as plain regions
where it should be set to zero.
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The advantage of video dependent schemes is apparent when the video is compressed. This is shown in
Fig. 6 for MPEG2 compression at 6Mbit/s and Fig. 7 for MPEG2 compression at 3Mbit/s. As the compression
increases, it becomes noticeable that the video dependent scheme is more resilient to this attack. By comparing
Fig. 5, 6 and 7 it can be observed that the effect of MPEG2 compression on SNR is a reduction of −12dB for
a rate of 6Mbit/s MPEG2 and −18dB for a rate 3Mbit/s MPEG2 as compared to the uncompressed situation.
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It can be observed that a typical SNR0 for these schemes in the absence of the attacks is around −22dB
which allows for a watermark data rate of about 3000 bits/s without coding. Coding can improve this rate
to values above 5kbit/s. In the case of an 6Mbit/s MPEG2 attack, this SNR0 value is reduced by a value of
about −12dB, giving a SNR0 = −34dB. In this case, the uncoded situation allows for a data rate of just 200
bits/s, but coding can easily improve this situation, and this is the case when long turbo codes are effective.
Turbo coding can provide a data rate in the range of 500-2000 bits/s. In the case of a 3Mbit/s MPEG2 attack,
the situation becomes critical, with a SNR0 around −42dB. In this case, low rate, short codes have to be
used.

The embedded energy can be increased by using better embedding schemes, such as DCT domain embed-
ding using Just Noticeable Difference (JND) measures, or wavelet domain embedding. A DCT based scheme
can produce a SNR0 = −17dB with no attacks, which from Fig. 3 allows for an uncoded data rate higher
than 5kbit/s. A wavelet based scheme can have a SNR0 = −13dB in the absence of attacks, which also leads
to a very high uncoded data rate. When the video is compressed at 3Mbit/s, the signal to noise ratio drops
to about SNR0 = −39dB for the JND scheme and about SNR0 = −30dB for the wavelet-based system. This
signifies that the JND scheme can work at up to 500bit/s with 3Mbit/s compression, whereas the wavelet-based
scheme can achieve 200bit/s with no coding (Fig. 4) and more than 5kbit/s with coding (Fig. 3).

7. DIRTY PAPER CODES

The channel presented so far in this paper is not the best channel model for watermarking schemes. It has been
shown that the watermarking channel is better modeled as a channel with side information.11 The knowledge
of the host signal can be used at the encoder to design the codewords in such a way that the host interference is
eliminated.12 This has resulted in the concept of “dirty paper codes”, codes which eliminate the interference
due to the host signal. This means that the error correction coding has to cope only with the distortion due to
attacks, such as the MPEG2 attacks. Although this scheme is clearly better than the spread spectrum scheme,
the comparison has to take into account several aspects, of which the most important is the adaptability of
the the dirty paper code to HVS marking schemes. This dictates the amount of energy the watermark has,
and thus the SNR when the video is compressed using MPEG2. We assume that the scheme is a non-HVS
scheme and thus its energy is similar to that of the video independent scheme presented in section 6. Practical



implementations of dirty paper codes in the form of dither modulation are presented in.11, 13, 14 This shows
that the scheme has an impressive performance under MPEG2 compression, even at 3Mbit/s. The SNR is in
the range of -18dB to -17dB, which means that without coding it could embed as much as 5kbit/s. The use
of coding can allow for very large blocks, which can be calculated using the asymptotic formula 4 or just the
asymptotic Shannon limit. It is known that turbo codes can approach this limit for very large blocks.

8. CONCLUSIONS

The paper investigates the performance of additive spread spectrum schemes with error correction coding.
The watermarking scheme is modeled as a communications channel and a SNR value is calculated for different
schemes and watermark bit rates. Using the SNR value and optimal spherical codes introduced by Shannon,
the maximum bit rate of such a scheme for a given probability of error Pw is calculated. This illuminates the
trade-off block length/code rate/watermark data rate and identifies the coding scheme to be used depending
on the available watermark energy to interference energy ratio. Note that the limit presented here is not an
ultimate limit for watermarking. It depends on modeling the channel as a communications channel and using
spreading and scrambling to obtain a Gaussian interference. Schemes that use the correlation of the image
rather than trying to break it could improve system performance. Also, a large part of the interference energy
comes from the host signal. Host interference rejecting methods such as quantisation index modulation thus
have a great advantage over additive spread spectrum. Classical error correction coding can also be used with
these schemes to largely increase their data rate.
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