
Stereo Correspondence Matching using Multiwavelets   
 
 

Pooneh Bagheri Zadeh and Cristian V. Serdean  
Department of Engineering, Faculty of Technology, 

De Montfort University 
Leicester, UK 

E-mail: pbz@dmu.ac.uk , cvs@dmu.ac.uk
 
 

Abstract—this paper presents a novel multiwavelet-based 
stereo correspondence matching technique. A multiwavelet 
transform is first applied to a pair of stereo images to 
decorrelate the images into a number of approximation 
(baseband) and detail subbands. Information in the basebands 
is less sensitive to shift variability of the multiwavelet 
transform. Basebands of each input image carry different 
spectral content of the image. Therefore, using the basebands 
to generate the disparity map is likely to produce more 
accurate results. A global error energy minimization technique 
is employed to generate a disparity map for each baseband of 
the stereo pairs. Information in the resulting disparity maps is 
then combined using a Fuzzy algorithm to construct a dense 
disparity map. A filtering process is finally applied to smooth 
the disparity map and reduce its erroneous matches. 
Middlebury stereo test images are used to generate 
experimental results. Results show that the proposed technique 
produces smoother disparity maps with less mismatch errors 
compared to applying the same global error energy 
minimization technique to wavelet transformed image data. 

Keywords- Multiwavelets, Correspondence matching, 
Disparity estimation, Stereo vision. 

I.  INTRODUCTION 
Stereo correspondence matching is defined as the process 

of finding the best correspondence points between a stereo 
image pair. The disparity map generated from the 
correspondence matching process, along with the stereo 
camera parameters are then used to compute the depth map 
and produce a 3D view of the scene. However, the accuracy 
of the correspondence map, which is crucial in generating a 
precise 3D view of the scene, is limited due to a number of 
problems such as occlusion, ambiguity, illumination 
variation and radial distortion [1]. 

Area-based (local) and energy-based (global) 
correspondence matching algorithms are the two most 
common types of algorithms used in the literature to generate 
disparity maps. In area-based methods a disparity vector for 
each pixel within a window search area is calculated using a 
matching algorithm, while in energy-based methods, the 
disparity vector is determined using a global cost function 
minimization technique. Area-based methods are fast but 
produce descent results, while global methods are more time 
consuming and in turn generate more accurate results. 

Muhlman et al [2] presented an area-based matching 
technique for RGB stereo images. This algorithm uses left-
to-right consistency and uniqueness constrains to generate 
the initial disparity map. The resulting disparity map is then 
further smoothed by applying a median filter. Another area-
based scheme was proposed by Stefano et al [3]. Stefano's 
algorithm is based on the uniqueness and constraint but it 
relies on the left-to-right matching phase. Yoon et al [4] 
introduced a local correlation-based correspondence 
matching technique, which uses a refined implementation of 
the Sum of Absolute Differences (SAD) criteria and a left-to-
right consistency check. This algorithm uses a variable 
correlation window size to reduce the errors in the areas 
containing blurring or mismatch errors. Yoon and Kweon [5] 
proposed another local-based algorithm, which uses different 
supporting weights based on the color similarity and 
geometric distances for each pixel in the search area to 
reduce the ambiguity errors.  

Kim et al [6] reported a global-based technique for stereo 
correspondence matching. This algorithm first generates a 
dense disparity map using a region dividing technique based 
on Canny edge detection. It then further refines the disparity 
map by minimizing the energy function using a Lagrangian 
optimization algorithm. Ogale and Aloimonos [7] proposed 
another global-based correspondence matching algorithm, 
which is independent of the contrast variation of the stereo 
images. This algorithm relies on multiple spatial frequency 
channels for local matching and a fast non-iterative left/right 
diffusion process for the global solution. An energy-based 
algorithm for stereo matching, which uses a belief 
propagation algorithm, was presented in [8].  This algorithm 
uses hierarchical belief propagation to iteratively optimize 
the smoothness of the disparity map. It delivers fast 
convergence by removing redundant computations. Choi 
and Jeong [9] proposed an energy-based stereo matching 
technique, which models the intensity differences between 
the two stereo images using a uniform local bias 
assumption. This local bias assumption is less sensitive to 
intensity dissimilarity between the stereo images when 
using normalized crosscorrelation matching cost functions. 
The resulting information from the cost function and the fast 
belief  propagation  algorithm  are  combined  to  generate  a 
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smooth disparity map. 
Over the past years much research has been done to 

improve the performance of the correspondence matching 
techniques. Multiresolution-based stereo matching 
algorithms have received much attention due to hierarchical 
and scale-space localization properties of the wavelets [10, 
12]. This allows for correspondence matching to be 
performed on a coarse-to-fine basis, resulting in decreased 
computational costs. Sarkar and Bansal [12] presented a 
multiresolution-based correspondence generation technique 
using a mutual information algorithm. They showed that the 
multiresolution technique produces significantly more 
accurate matching results compared to correlation-based 
algorithms at much lower computational cost. 

Multiwavelets offer some notable advantages compared 
to scalar wavelets, such as possessing orthogonality 
(preserving length), symmetry (good performance at the 
boundaries via linear-phase) and a high approximation order 
at the same time [11], which could potentially increase the 
accuracy of the correspondence matching techniques. 
However, in spite of this, the application of the 
multiwavelets in stereo correspondence matching has been 
little investigated in the literature so far. 

In this paper, a novel multiwavelet-based stereo matching 
algorithm using a global error energy minimization 
technique is presented. An unbalanced multiwavelet is first 
applied to the input stereo images to decompose them into a 
number of subbands. The global energy minimization 
algorithm is then employed to generate a disparity map using 
the coarse subbands. A fuzzy algorithm is used to combine 
the disparity maps and generate a dense disparity map. The 
rest of the paper is organized as it follows. Section II 
presents a brief review of the multiwavelet transform. The 
proposed stereo matching technique is discussed in Section 
III. Experimental results are presented in Section IV and 
Section V is dedicated to the conclusions.  

 

II. MULTIWAVELET TRANSFORM 
Multiwavelet transforms are in many ways similar to scalar 
wavelet transforms. Classical wavelet theory is based on the 
refinement equations given below: 
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where ( )tφ  is a scaling function, ( )tψ  is a wavelet function, 

kh and kg  are scalar filters and m represents the subband 
number. In contrast to wavelet transforms, multiwavelets 
have two or more scaling and respectively wavelet functions.  
 

Figure 1.  GHM multiwavelet with multiplicity r = 2 and approximation 
order 2. 

The set of scaling and wavelet functions of a multiwavelet 
in vector notation can be defined as: 
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where ( )tΦ and ( )tΨ  are the multiscaling and respectively 
multiwavelet functions, with r scaling- and wavelet 
functions. In the case of scalar wavelets 1=r , while 
multiwavelets support 2≥r . To date,  most multiwavelets 
are restricted to 2=r . Such multiwavelets poses two scaling 
and two wavelet functions and can be represented as [13]: 
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where kH  and kG are rr × matrix filters and m is the 
subband number. Figure 1 shows an example of GHM 
multiwavelet basis functions with multiplicity 2=r   and 
approximation order 2 [11]. 
Due to their multiple filters, multiwavelets can possess 
symmetry, orthogonality and approximation orders higher 
than 1 simultaneously, while scalar wavelets do not allow 
this extra degree of freedom.  
Since multiwavelets generate four different approximation 
subbands (basebands) from the input image, this can be 
exploited to increase the accuracy and reduce the number of 
erroneous matches in the disparity maps. More information 
about the multiwavelet transform and its applications can be 
found in [11, 13]. 

Scaling Function 1 Scaling Function 2

Wavelet Function1 Wavelet Function 2
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Figure 2.  Analysis/synthesis stage of one level multiwavelet transform. 

Similar to wavelet transforms, multiwavelets can be 
implemented using Mallat's filter bank theory [10]. Figure 2 
shows one level of the analysis and synthesis stage for a 1D 
multiwavelet transform, where blocks G  and H  are low- 
and high-pass analysis filters and ~G and ~H are low- and 
high-pass synthesis filters. 2D multiwavelet transforms are 
separable and hence the 2D transform can be calculated via 
two 1D transforms. Therefore, for one level of 
decomposition and multiplicity 2, the 2D multiwavelet 
transform generates sixteen subbands, where four of them 
are approximation subbands. Figure 3 provides a visual 
comparison of the resulting subbands for a 2D scalar wavelet 
based on the Antonini 9/7 filter (Figure 3(a)) and 
respectively for a 2D multiwavelet based on unbalanced 
GHM filters (Figure 3(b)). As it can be seen from Figure 3, 
the multiwavelet transform generates four subbands instead 
of each subband generated by a scalar wavelet and these four 
subbands carry different spectral content of the input image 
due to multiwavelets' filter properties. 

III. MULTIWAVELET-BASED STEREO MATCHNING 
TECHNIQUE 

Figure 4 shows a block diagram of the proposed 
multiwavelet-based stereo matching technique using the 
global error energy minimization algorithm. A pair of stereo 
images is input to the system. The images are first rectified 
to suppress the vertical displacement. An unbalanced 
multiwavelet transform is then applied to the stereo images 
to decorrelate them into their subbands. Figure 5 shows the 
resulting subbands after applying a one level multiwavelet 
transform.   
Due to the unbalanced nature of the multiwavelet, each 
resulting baseband ( 11LL , 21LL , 12LL  and 22LL  ) is an 
approximation of the input image with different spectral 
content of the input image, while the remaining subbands 
mainly contain a mixture of horizontal, vertical and diagonal 
details of input image. In addition to this, the information in 
the basebands is less sensitive to the shift variability of the 
multiwavelets. In this paper, an unbalanced multiwavelet 
with multiplicity r=2 is used and as such the multiwavelet 
transform of each input image contains four basebands. The 
same basebands in the two images are then passed to a 
regional-based stereo matching block. The matching 
algorithm uses a global error energy minimization technique 
[14] to generate a disparity map between the two input 
subbands.  This global error energy minimization technique 
is briefly described in sub-section A. The output of the 
matching process gives four disparity maps. These maps are 
then combined using a Fuzzy algorithm to generate a dense 
disparity map with less erroneous matches.  

Figure 3.   Single level decomposition of Lena test image (a) Antonini 9/7  
wavelet transform (b) Unbalanced GHM multiwavelet transform. 

A. Global Error Energy Minimization technique 
The Global Error Energy Minimization (GEEM) technique 
[14] calculates a disparity vector for each pixel. It searches 
for the best match for each pixel in the correspondence 
search area of the other image using an error minimization 
criterion.  For RGB images, the error energy criteria can be 
defined as: 
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where 1I and 2I  are the two input images,  

),,,( yxen wwjiEr is the difference energy of the pixel 

),(2 jiI and pixel ),(1 yx wjwiI ++ , xd is the maximum 

displacement around the pixel in x  direction, yd is the 
maximum displacement around the pixel in y  direction,   
m and n are the image size and k  represents the three 
components of an RGB image. 
In order for the GEEM algorithm to determine the disparity 
vector for each pixel in the current view, it first calculates 

enEr of each pixel with all the pixels in its search area in the 
correspondence image. For every disparity vector ),( yx ww  
in the disparity search area, error energy is calculated using 
Equation 4 and placed into a matrix.  Each of the resulting 
error energy matrices is first filtered using an average filter 
to decrease the number of incorrect matches [15]. The 
disparity index of each pixel is then determined by finding 
the disparity index of the matrix, which contains the 
minimum error energy for that pixel. In order to increase the 
reliability of the disparity vectors around the object 
boundaries, which is the result of object occlusion in images, 
the generated disparity map undergoes a thresholding 
procedure as it follows:  
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Figure 4.  Block diagram of multiwavelet-based stereo matching technique 

using the global energy minimization algorithm. 

Figure 5.  One level of decomposition for a 2D multiwavelet. 

(a) “Art” stereo  test images

(b) “Cones” stereo test images
 

Figure 6.  The left image and the ground truth of the (a) "Art", and  (b) 
"Cones" stereo test images. 

where ),(
~

jid  is the processed disparity map, ),( jid  is the 
disparity map, α  is a tolerance reliability factor and 

),( jiEren  is the minimum error energy of the pixel ),( ji  
calculated and selected in the previous stage. Finally a 
median filter is applied to the processed disparity map 

),,(
~

jid to further smooth the resulting disparity map. 

IV. SIMULATION RESULTS 
In order to evaluate the performance of the proposed 
technique, the multiwavelet-based GEEM algorithm and a 
similar wavelet-based technique were applied to the "Art" 
and "Cones" stereo test images from the Middlebury stereo 
database [16]. Figures 6(a) and 6(b) show the left image and 
the ground truth of the “Art" and “Cones" test images, 
respectively. The experimental results were generated using 
the GHM unbalanced multiwavelet and the Antonini 9/7 
scalar wavelet. Figures 7(a) to 7(h) show the resulting 
disparity maps using the multiwavelet subbands 11LL , 21LL , 

12LL  and 22LL for the "Art" and "Cones" stereo test images. 
In order to give a visual comparison, the resulting disparity 
maps for the "Art" and "Cones" stereo test images, obtained 
for both the proposed multiwavelet-based algorithm and a 
similar wavelet-based algorithm, are illustrated in figures 
8(a) to 8(d). In these figures areas with intensity zero 
represent unreliable disparities. From Figure 8, it is obvious 
that the disparity map of the multiwavelet-based algorithm is 
more accurate and smoother than that of the wavelet-based 
technique.  This can be explained by the fact that basebands 
of the multiwavelet transformed images carry different 
spectral content of the input images, which enables the 
global error energy minimization algorithm to generate more 
reliable matches from the four combined multiwavelet 
basebands than from a single scalar wavelet baseband. 

   

V. CONCLUSION 
In this paper a new multiwavelet-based stereo matching 

technique using a global energy minimization algorithm was 
presented. An unbalanced multiwavelet transform with 
multiplicity of 2 decomposes the input stereo images into a 
number of subbands. The resulting four basebands of the two  
views were then used to generate the disparity map using the 
global error energy minimization algorithm described in this 
paper. The resulting four disparity maps were then combined 
using a Fuzzy algorithm to generate a dense disparity map. 
Results show that the proposed technique produces a 
disparity map with significantly less mismatch errors 
compared to the scalar wavelet-based algorithm.  
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Figure 7.  Disparity map using the multiwavelet basebands of  "Art" stereo 
test image, a) 11LL , b) 21LL , c) 12 LL  and d) 22LL  and "Cones" stereo 

test image, e) 11LL , f) 21LL , g) 12 LL  and h) 22LL . 
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